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In multivariate systems, when it comes to identifying actual operating conditions ranges, or optimal set-
tings, the use of constrained optimization is often required. Among the different tools for the engineer to
perform such optimization, designed experiments offer accurate performances. In this paper, the optimi-
zation process of “electroacoustic absorbers” is investigated by means of response surface methodology.
A multivariate linear model is established by a series of designed experiments in order to analyze the
modification of electroacoustic absorber performances due to the variation of several constitutive
parameters (such as the moving mass of the loudspeaker, the enclosure volume, the filling density of
mineral fiber within the enclosure, and the electrical load value to which the loudspeaker is connected),
that influence their whole absorbing mechanisms. A simple case study is then provided to illustrate the
capabilities of the developed optimization procedure, from which general conclusions on such design
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methodology, as well as on electroacoustic absorbers sensitivity, are drawn.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Electroacoustic absorbers are semi-active, or eventually active,
devices dedicated to noise reduction in the low-frequency range.
Basically, such devices consist of a loudspeaker system, including
acoustic circuits and enclosures (totally or partially filled with por-
ous material), the whole constituting a resonant system capable of
absorbing sound energy within a frequency range in which con-
ventional passive materials are not effective and/or cumbersome.
When connecting a resistive load of positive value to the electrical
terminals, one can significantly modify the value of the acoustic
impedance that the transducer presents to the external environ-
ment, in a semi-active manner [2,3]. Thus, by selecting a suitable
resistive load the acoustic impedance of the electroacoustic absor-
ber can be tuned so as to match the characteristic impedance of air,
and hence the transducer becomes then even more absorbent
around its resonance frequency. When it comes to integration
however, some design parameters, such as enclosure volume if
overall dimensions are limited, are generally specified, which cor-
responds to a constraint in view of finding out the best compro-
mise in terms of absorption capabilities versus physical
embodiment of the device. For instance, in the frame of low-
frequency noise control in rooms, the damping of first modal fre-
quencies requires very bulky devices (such as bass-traps or panel
absorbers), to which such optimized electroacoustic absorbers
with quite low overall dimensions could represent an interesting
alternative [4]. Consequently, the overall mechanisms exhibited
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by an electroacoustic absorber are a combination of dissipative
effects due to the mechanical losses in the loudspeaker’s moving
body, viscous dissipation of air induced by the penetration of
sound waves in a porous medium filling the enclosure, and the dis-
sipation in form of thermal energy induced by the circulation of
electrical current within the resistive load connected to the termi-
nals of the loudspeaker.

Although many authors have conducted research on the design
of electroacoustic absorbers based on shunt electrodynamic loud-
speakers [2] or electromechanical Helmholtz resonators [3], only
few of them have reported the optimization study of absorbing/
reflecting performances. Regarding the design of acoustic absorb-
ers, some references addressing optimization processes may be
found in the literature. In their work, Yu et al. describe an analyt-
ical solution of a resonator-enclosure interaction model to opti-
mize the resonator resistance [5]. It is shown that the proposed
model serves as an efficient design tool to determine the internal
resistance of the Helmholtz resonator in order to achieve optimal
sound reduction in the frequency band comprising acoustic reso-
nances. More recently, Ruiz et al. have presented an optimization
procedure based on simulated annealing which has been per-
formed to enhance the design of micro-perforated panels, so that
the absorptive capabilities of those panels can be fine-tuned to
an optimal [6]. In micro-perforated panels, the absorption phe-
nomena do not only rely on dissipative mechanisms (friction losses
within micro-perforations), but also on resonant properties (cou-
pling with a back-cavity for example). Through optimization study,
an optimal setting has been achieved, and such methodology is
demonstrated to allow fine-tuning of the absorbing capabilities
with respect to the frequency range of interest.
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In general, modifying a factor (or parameter) at a time often
leads to select a wrong optimum, due to potential interactions be-
tween factors which are not taken into account. To alleviate this
situation, the response surface methodology (RSM) has been ap-
plied to optimize the acoustic performances of an electroacoustic
absorber, since such devices are intrinsically multivariate systems.
This method was first introduced by Box and Wilson [7] for devel-
oping empirical models of complex processes that could be used to
locally represent a process response [7]. A review of the literature
of RSM including theoretical aspects and practical applications
were carried out by Hill and Hunter [8]. Basically, RSM is used
for replacing an overall process by an approximate model based
on a series of results collected at various discrete points within
the design space. Low-order polynomial functions (second-order
is often implemented) are generally employed as they can effi-
ciently model low-order processes, since the processing of the cor-
responding response surface is fast and cheap. The most extensive
applications of RSM can be found in the realm of industrial engi-
neering, particularly in situations where numerous explanatory
variables can potentially influence a performance measure, or
quality characteristic, of products or processes. The efficiency of
the RSM as an advantageous optimization method is documented
in many fields and a number of improvements of the method is
presented in the literature [7-11].

2. Electroacoustic absorbers
2.1. General presentation

An electroacoustic absorber is an electroacoustic loudspeaker
system, including enclosure and acoustic circuit, the acoustic
impedance of which can be varied by various electrical means, be
it passive or active. In the specific case of the electrodynamic mov-
ing-coil loudspeaker given in Fig. 1, the lumped elements model of
such devices includes a moving mass M,,;, a mechanical compli-
ance Cys, a mechanical resistance Ry, as well as coupling factors
(force factor B, and radiating surface S). The above-mentioned ele-
ments also account for the mechanical counterparts of the acoustic
radiation impedances (for instance C,, = V,/pc? the acoustic com-
pliance of the enclosure of volume V,,, where p is the density of
air and c the celerity of sound in air, or the acoustic radiation mass
and resistance). At last, the electrical conditioning of the loud-
speaker electrical terminals is also accounted as equivalent
mechanical elements, including the d.c. resistance and self induc-
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Fig. 1. Schematic of electroacoustic absorber.

tance of the coil R, and L., but also any electric load that shunts
the loudspeaker electrical terminals [12]. If the electric load is a
simple resistor R, (passive shunt), it has been proven that such de-
vice can generally be characterized in terms of equivalent normal-
ized admittance, the expression of which is of the form [1]:

1
mc 2 .
Rins + 7% + jooMps + r5—

JoCms

Y=2 (M

where Z,,,. = SZ. is the equivalent mechanical impedance of charac-
teristic impedance of air, namely Z. = pc. For electroacoustic absorb-
ers, the targeted objective functions is usually a global measure of
sound energy absorption, namely the acoustic absorption coeffi-
cient o:

a:]_‘u

2)

To provide a complete absorption, the coefficient must equal 1.
If it is not, the performances of the absorber can be increased
through optimization design, which is one of the main motivation
of this paper.

2.2. Acoustic performance assessment

Measurement of sound absorption coefficient under normal
incidence of actual electroacoustic absorbers can be performed in
an impedance tube configuration, after ISO 10534-2 standard,
using the two-microphone transfer function method [13]. The cor-
responding one-dimensional experimental setup is described in
Fig. 2. Using this setup, the acoustic absorption coefficient is de-
rived from the assessment of sound pressure at two different posi-
tions in an impedance tube, one extremity of which is closed with
the electroacoustic absorber. The formulation of the absorption
coefficient is given below:

o=1-1rf 3)
where r is the reflection coefficient, processed after:

_Hip-H .
r= Hr —Hpy exp(2jkx;) (4)

The term Hy, = p1/p, is the transfer function between the two
sound pressure p; and p, sensed at positions 1 and 2 (see Fig. 2),
H;=exp(—jk(x; — x2)) and Hg=exp(jk(x; — x)) are the transfer
functions corresponding to the incident p; and reflected p, sound
waves respectively, x; being the position of the most distant micro-
phone from the absorber under study and k the wave number.
Alternatively, the resulting acoustic performances of electroacous-
tic absorbers can be assessed in the context of actual rooms, espe-
cially in the low-frequency range, and more precisely below the
Schroeder frequency. In a recent publication [4] dealing with mod-
al control in rooms, 10 electroacoustic absorbers distributed in a
line array configuration and placed at several positions in a rever-
berant chamber, each single absorber being primarily tuned in an
impedance tube, have been assessed and demonstrated to be
equally effective for damping several modes at a time in the room,
the damping capabilities being more effective within the band (20-
40 Hz). In the following, we will then focus on optimizing and
assessing single electroacoustic absorbers in a one-dimensional
configuration, assuming those performances can be easily extrapo-
lated to practical 3D configurations.

3. Response surface methodology

The methodology of response surface (RSM) is an experimental
strategy for exploring the space of a process involving a number of
explanatory variables by using empirical statistical models. Using
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Fig. 2. Experimental setup for the assessment of electroacoustic absorber’s absorption coefficient under normal incidence.

this approach, a complex process is replaced by an approximate
model based on experimental data evenly collected within the
space of the process by varying simultaneously some influential
parameters in a structured way. It also includes an optimization
method for finding the levels of the controllable input variables
that produce desirable values of the response.

3.1. Objective function estimation

The RSM strategy aims at developing an appropriate approxi-
mated relationship between obtained responses and explanatory
variables. To establish this matching, polynomial functions of sec-
ond-order are frequently used. The general form of response sur-
face models of second-order with interactions that describes the
relationship between the response variable of interest y and m
independent explanatory variables may be written as:

m m m
y= b() + Z biXi + Z b,'inXj + Zb,—ix,-z + & (5)
i=1 i=1j>i i=1
where y approximates the objective function, x; and x; are the inde-
pendent explanatory variables, b; and b; represent the polynomial
coefficients to identify, and ¢ the error associated to y, that repre-
sents other not accounted sources of variability which are assumed
to be normally distributed. Starting from the general form of Eq. (5),
the polynomial function restricted to four explanatory variables can
be expressed as follows:

¥ = bo + b1Xy + baXy + b3Xs + baxa + b1aX1X2 + bi3X1X3

+ b14X1X4 + ba3XoX3 + boaXoXs4 + b3aX3X4 + bnxf + b22X§

+ b33x? + by’ + & (6)
For n observations, the model of Eq. (6) may be written in matrix
form as:
y=Xp+e (7)

where y is an n x 1 vector of the observations, X is an n x p design
matrix, f is a p x 1 vector of the regression coefficients or effects,
and ¢is an x 1 vector of random error or noise. The method of least
mean squares is commonly used to estimate the unknown regres-
sion coefficients in a multiple regression analysis. At last the un-
known g terms can be obtained from the formula:

p=(XX)"'Xy (8)

The B vector is composed with the unknown parameters set
which can be estimated by collecting experimental data. The col-
lected data can either be derived from actual physical experiments
or from numerical models of the same experiments. When the g
terms are substituted into the second-order response surface mod-
el given in Eq. (6), the approximating polynomial function can be
predicted at any explanatory variable x;. Once a response surface
model is obtained, statistical analysis techniques are usually pro-
cessed to check the fitness of the mathematical model, and then
a canonical analysis can be performed to investigate the shape of
the predicted response surface.

3.2. Decomposition of variance

The key to determining the overall utility of the regression
equation lies in assessing its ability to account for the variance ob-
served in the response variable. The objective of variance analysis
is to estimate to what extent the whole model and its individual
parameters contribute to an understanding of the response vari-
able under study. In other words, this test procedure aims at
describing if changes in the response are caused by changes in
the action between different levels, or by random fluctuations
due to the dispersion of responses. The required theory of variance
analysis is listed in Table 1.

In this table, the total sum of squares SS; measures the overall
fluctuations of the individual observations of the dependant vari-
ables around their average. The regression sum of squares SSy is
the sum of the squared differences between the values of the
dependent variable predicted by the regression line y; and those
predicted by the mean j. The residual sum of squares SSg repre-
sents the sum of the squared differences between the observed val-
ues y; of the response and the ones predicted by the regression y;.
To estimate whether certain actions of the model are significant or
not, we use the experimental and critical tabulated values of Fisher
F-test. Referring to probability statistics, F = MSg/MSg is the ratio of
the explained variability and the unexplained variability, each di-
vided by the corresponding degrees of freedom [14,15]. The larger
the F-test, the more useful the model. When the level of signifi-
cance o is specified, the critical value F,,_, 1, that satisfies the
probability:

P{F>F,npio}t=0 9)

can be looked up from F-distribution tables. If F> F, ,_,_1,, then the
second-degree polynomial can be considered as a reliable model at
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Table 1
Variance analysis table.
Sum of squares Degree of freedom Mean squares F-test p-value
Regression SSk = =i ,y)z p MSg = SSr/p F = M%? F>Fpnp1o
Error SSg = 2(y; — ¥)° n-p-1 MSg=SSg/(n—p—1)
Total SSr =32y —¥)° n-1
15,
Table 2 X =—=B"'b (15)
Loudspeaker Visaton AL-170 technical data. 2
1
Nominal impedance 8Q Y, =bo+-xb (16)
Resonance frequency 38 HZ 2
Z"O"i“g mass ’Z’ms ;36 gQ The nature of the stationary point is determined with the signs
cresistance Re ; of the eigenvalues of matrix B, and the relative magnitude of
Inductance of voice coil L, 0.9 mH X . X .
Force factor Bl 6.9 Tm eigenvalues are also helpful in t.he total interpretation of the re-
Effective piston area S 133 cm? sponse system. At last, the canonical equation for the response sur-
Equivalent volume V 341 face is expressed as:
Mechanical Q factor Qs 3.88
Electrical Q factor Qe 0.43 . f
Total Q factor Qs 0.39 Y=Y+ > hw} (17)

o level. This test procedure is therefore a mean to improve the
regression equation.

3.3. Canonical analysis

The main reason for performing a canonical analysis is to gain
insight into the nature of the response surface, i.e. if the response
is a maximum, a minimum, or a saddle point. Moreover, the effects
of input variables combinations which have not been carried out in
the designed experiments can still be considered [10]. The qua-
dratic fitted model which relates independent explanatory vari-
ables x = (x1,X2,...,Xm) to a response variable y (see Eq. (6)) can
also be expressed in matrix notation as:

9 = bo +xb + ¥ Bx (10)

where by, b, and B are the estimates of the constant, linear, and sec-
ond-order coefficients, respectively.

2by1 bz bim
= ] b]z 2b22
g_1 11
21 ... . 2b33 ( )
bim ... ...  2bum
b,
b | 2 (12)
bn
X=(X X2 ... Xn) (13)

To find the best estimates for the parameters B, b, and by, statis-
tically designed experiments are employed. Once a model has been
estimated for a particular space of a process, the direction of max-
imum gradient is found by normalizing the factors and differenti-
ating on x.

w oo
e =b+2Bx (14)

Setting the second term of Eq. (14) to O yields the location of the
stationary point x; and the predicted response y, [10]:

i=1

where J; is the eigenvalue of matrix B associated to the explanatory
variable x;, and w; are called the canonical variables.

4. Designed experiments of electroacoustic absorbers
4.1. Design factors and variation ranges

The design factors are the explanatory variables over which the
experiments can be actually controlled. In the frame of this study
the selected factors are some constitutive parameters of an electro-
acoustic absorber which reflect some dissipative mechanisms of
sound energy, and are also controllable. The corresponding vari-
ables are given in Fig. 3. The variation ranges are the physical con-
straints of each factors, or the limitations imposed by the
experimental setup, that define and limit the space of the process.

The selected design factors, whose subscripts from Eq. (1) are
removed for ease of writing, are listed hereafter:

- The moving mass M of the moving-coil loudspeaker.

- The enclosure volume V of the closed-box.

- The filling density of mineral fiber 7.

- The electrical load value R to which the loudspeaker is
connected.

As presented earlier, the sound absorption coefficient & which is
measured in one-third octave bands is used as response variable
depending on the frequency.

ﬂ’R electrical load

mineral fiber .
\

variable
enclosure

added mass

Fig. 3. Schematic of electroacoustic absorber including design factors.
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To improve the understanding of the phenomenon by allowing
heterogeneous comparison of quantities, it is convenient to trans-
form natural variables into coded variables. Natural variables are
expressed in physical units of measurement, whereas coded vari-
ables are dimensionless, have zero mean and the same standard
deviation. The applied transformations are given hereafter:

Xy = MM, oy vV

1= "aM > AV
z logR—logR (18)
— I=T. —= =657
X3 = AT X4 = log AR

where for the case of design factor M, M = (M + Mpna)/2 and
A M = (Mpax — Mmin)/4, the same applying for the other design fac-
tors V,7, and R. As it can be seen in Eq. (18), a logarithmic transfor-
mation has been chosen to take account of the large range that
relates to the electrical load factor. Using this transformation, phys-
ical values of design factors are transformed into coded values -2,
-1, 0, 1, 2. Table 3 shows the corresponding values between both
natural and coded levels.

In order to practically increase the moving mass of the loud-
speaker, a certain quantity of sinkers has been stuck to the dia-
phragm, as illustrated in Fig. 4. Moreover, in order to allow
variation of the enclosure volume, a specific cabinet has been de-
signed which was filled with a variable quantity of mineral fiber
according the specifications of the designed experiments (see
Fig. 4).

Table 3

Coded and natural levels of design factors.
Coded levels -2 -1 0 1 2
Natural levels
Moving mass (103 kg) 13 17 21 25 29
Enclosure volume (1073 m?) 4 12 20 28 36
Filling density (%) 0 25 50 75 100
Electrical load (Q) 0.1 1 10 100 1000

4.2. Designed experiments for fitting response surfaces

In statistics, factorial experiments are a class of designed exper-
iments for which the explanatory variables are varied simulta-
neously, but in a structured way. Such a design consists of two
or more factors, each with discrete possible values or levels. The
experiments can take all possible combinations of the levels of
each factor. However, two-levels factorial designs are insufficient
to fit a second-order model. Indeed, with two-levels factorial de-
signs, each factor is only investigated at an upper and a lower level,
which bounds the space of the process. Such a design requires the
assumption of no curvature within the design space, whereas to
describe an extremum, one must estimate quadratic curvature
requiring at least three levels for each factor. In order to attain
the optimum response, three-levels factorial designs were devel-
oped by Box and Behnken [9]. As this study focuses on fitting the
second-order model given in Eq. (6) which contains p = 15 param-
eters to be estimated, at least 15 different combinations of design
factors must be estimated. However, such designs with m input
variables involve a great number of runs n=3™ compared to the
p coefficients to be determined.

To alleviate this situation, central composite designs (CCD) have
been developed. This class of experimental designs involves the
use of a two-levels factorial, one combined with a 2m axial or star
points and ng center runs [10]. Center runs clearly provide informa-
tion about the existence of curvature in the system or process un-
der study. As the former are often replicated this can also estimate
experimental error. If curvature is found, the addition of axial
points allows for estimation of the pure quadratic terms. The value
of the axial distance generally varies from 1 to /m which guaran-
tees that the CCD is effective from a variance point of view. The
number of runs to be made in both orthogonal or rotatable CCD
are thus n=2"+2m + ng, sensibly lower than tree-levels factorial
designs. For these reasons, CCD are popular for fitting a second-or-
der surface in experimental optimization processes. In Table 4, the
conducted central composite design is illustrated with coded vari-

Fig. 4. Overview of the experimental setup.



R. Boulandet, H. Lissek/Applied Acoustics 71 (2010) 830-842

Table 4
Central composite design in coded variables.
Run # Design matrix
X1 X2 X3 X4

Full factorial design

4 -1 -1 -1 -1
20 -1 -1 -1 1
12 -1 -1 1 -1
6 -1 -1 1 1
8 -1 1 -1 -1
17 -1 1 -1 1
25 -1 1 1 -1
10 -1 1 1 1
13 1 -1 -1 -1
21 1 -1 -1 1
11 1 -1 1 -1
5 1 -1 1 1
18 1 1 -1 -1
19 1 1 -1 1
26 1 1 1 -1
9 1 1 1 1
Axial points

2 -2 0 0 0
23 2 0 0 0
30 0 -2 0 0
29 0 2 0 0
3 0 0 -2 0
15 0 0 2 0
24 0 0 0 -2
28 0 0 0 2
Center runs

1 0 0 0 0
7 0 0 0 0
14 0 0 0 0
16 0 0 0 0
22 0 0 0 0
27 0 0 0 0

ables. The description on curve fitting by multiple linear regres-
sion, the corresponding analysis of variance and the way for find-
ing the optimum response can be found in Refs. [10,16].

5. Results and discussion
5.1. Measured responses

Figs. 5-8 illustrate the curves of the one-third octave bands
absorption coefficients which were measured randomly during
the experiment. Coming back to our problem about low-frequency
noise control in rooms, some specifications have to be drawn for
the electroacoustic absorber in terms of sound absorption
performances. In view of damping the first modes in the control
room of a recording studio, which dimension are 3.40 m x
2.10 m x 2.15 m the electroacoustic absorber is primarily intended
to dissipate sound energy around 50 Hz. Therefore, the following
analysis will be focused on the normal 50 Hz one-third octave
band. Table 5 summarizes both measured and estimated responses
(namely the acoustic absorption coefficient) for the one-third oc-
tave band 50 Hz. The physical levels of the natural variables are de-
tailed for each of the n=30 experimental runs carried out
randomly.

5.2. Analysis of variance

Starting from the experimental results shown in Table 5, an
analysis of the variance is performed to investigate the validity of
the regression model. Table 6 illustrates the result of the ANOVA
which was carried out for a level of significance of 5%, i.e., for a
95% level of confidence. The last column of the table shows the

©run #4

run #12
run #6

run #17

run #10

50 63 125 250
Frequency (Hz)

Fig. 5. Measured absorption coefficients of the factorial design.

1 T

run #20 |

run #8

run #25 4

— run#13
run #21

O run #5

=== run#19
run #26

run #11 ]

©run #18 4

run#9 7

Frequency (Hz)

Fig. 6. Measured absorption coefficients of the factorial design.

125
Frequency (Hz)

Fig. 7. Measured absorption coefficients at axial points of design space.
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1 T T T - Table 7
. \ run z; ANOVA table for each individual effects.
0.9F un 14
/ \ e Source Ss df MS F-test p-value
run #22 4 :
0.8 e Main affects
M 0.018 1 0.018 441 0.053
0.7F 1 1% 0.039 1 0.039 9.82 0.007
T 0.007 1 0.070 1.75 0.205
0.6 1 R 0.172 1 0.172 43.02 <0.001
3 05F ] Interaction effects
MxV 0.023 1 0.023 5.83 0.029
04t i Mxt 0.001 1 0.001 0.13 0.727
M xR <0.001 1 <0.001 0.01 0.907
0.3} < 1 Vxt <0.001 1 <0.001 0.01 0.969
S~ VxR 0.001 1 0.001 0.01 0.727
02} \ i xR 0.032 1 0.032 7.89 0.013
Quadratic effects
01F ) M x M 0.007 1 0.007 1.82 0.197
‘ ‘ ‘ ‘ | VxV 0.053 1 0.053 13.30 0.002
0 50 63 125 250 TXT 0.004 1 0.004 1.05 0.322
Frequency (Hz) RxR 0.075 1 0.075 18.71 0.001
Error 0.060 14 0.004
Fig. 8. Measured absorption coefficients at the center of design space. Total 22.183 29
contribution (p-value) of the second-order regression model on the
Table 5 total variation.
Measured and estimated responses. From the analysis of Table 6, it is obvious that the F-test of AN-
= - - OVA is greater than the critical value. Indeed, by using F-distribu-
un # Experimental design Responses i K
tion tables we obtain F1s,14,0.05) = 2.46, F = 370 > F(15,14,0.05) for the
M(@(103kg) V(@10 3m3®) (%) R(Q) y y . . iy -
second-order regression model. The polynomial representing

4 17 12 25 1 081 084 absorption coefficient is therefore relevant for the corresponding
fg }; 3 ig 10? g‘gi 8'32 problem. It can be used to analyze the relationship between the

6 17 12 75 100 069 070 objective performance function and the selected constitutive

8 17 28 25 1 093 099 parameters (M, V, 7, and R) of the electroacoustic absorber. The
17 17 28 25 100 066 074 remaining step consists now in investigating the significance of
25 17 28 75 1 092 094 each factorial effect within the global regression model.

10 17 28 75 100 082 086 . .. .

13 25 s 25 1 095 097 Table 7 summarizes the result of the test for significance using
21 25 12 25 100 070 071 ANOVA with a level of significance of 5% for each individual regres-
11 25 12 75 1 091 091 sor coefficients of the model.

5 25 12 75 100 085 0381 From the analysis of Table 7, the F-test of some effects appears
L 23 28 2 E ey ey to be lower than F(1,14,0.05) = 4.60. We conclude that the quadratic
19 25 28 25 100 062 072 e . .

26 25 o8 75 1 092 092 terms M x M and 7 x 7, and interaction terms M x T, M x R, V x T,

9 25 28 75 100 079 084 and V x Rhave statistically insignificant effect. It can be also noted

that, within the frequency range of interest, namely the 50 Hz one-

2 13 20 50 10 085 087 third octave band, the most important effects are influenced by the
z 29 20 20 10 0.92 0.98 electrical load value and the enclosure volume. This complemen-
30 21 4 50 10 064 066 o T p
29 21 36 50 10 095 082 tary ANOVA indicates that some terms of Eq. (6) might be removed

3 21 20 0 10 097 089 to get a better model. By removing statistically nonsignificant ef-
15 21 20 100 10 088  0.96 fects from the second-order model, we obtain a reduced model
24 21 20 50 01 091 091 P .

i = - - T e G (Eq. (19)) whose ANOVA is given in Table 8.

1 21 20 50 10 0.97 0.93 ¥ = by + b1X1 + baXxy + b3X3 + byxg + b12X1X2 + b3aX3Xx4

7 21 20 50 10 097 093 5 5
14 21 20 50 10 097 093 + b22X5 + basx; (19)
16 21 20 50 10 097 093
22 21 20 50 10 098 093 . .

27 21 20 50 10 098 093 From the apaly51s of Table 8, it is apparent that the F-test of AN-
OVA F=540 is greater than the critical value Fg 20,0.05)=2.39.
Therefore, we conclude that the reduced regression model is rele-
vant and can be used in the following.
Table 6 Table 8
Variance analysis and evaluation of the regression model. Variance analysis of reduced regression model.
SS df MS F-test p-value SS df MS F-test p-value
Second-order Second-order
Regression 22.12 15 1.5 370 <0.001 Regression 22.12 9 2.46 540 <0.001
Error 0.06 14 0.004 Error 0.092 20 0.0046
Total 22.18 29 Total 22.18 29
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5.3. Fitted second-order response function

The coefficients of the reduced model are estimated by the least
mean squares method, as detailed in Section 3. The fitted second-
order response function which is obtained after regression is given
in coded variables by:

¥ =0.924 + 0.027x; + 0.040x, + 0.017x3 — 0.085x4
—0.038x;X, 4 0.044x3x4 — 0.046x3 — 0.046x2 (20)

In natural variables Eq. (20) becomes:

4 =-0.011+30.5M + 58.7V — 0.117 — 0.08 log(R)
—1187.5MV +0.187log(R) — 718.8V> — 0.05log(R)>  (21)

A similar approach can be envisaged by considering values mea-
sured in other range of frequency. The resulting models would be
simply different from those obtained in Eqs. (20) and (21).

5.4. Canonical analysis

After the polynomial has been verified, the RSM is processed in
Matlab®. From Eq. (15), the stationary point is observed at
x;=(-0.65, 0.71, 1.12, —0.38), and the predicted value is y; = 0.96
according to Eq. (16). It can be noted that the distance between
x; and the center of the design space is lower than the radius of
the design space, meaning that the stationary point is included
within the experimental domain of investigations. If the point
was located outside the region of the experiment, it would not
be advisable to use it for defining operating conditions because
the fitted model is only reliable inside the design space.

The computed eigenvalues of matrix B are i;=— 0.055,
J2=—0.053, /3 =0.007, and /4 = 0.009. The canonical form is there-
fore given by:

y =0.96 — 0.055w3 — 0.053w3 + 0.007w? + 0.009w3 (22)

As the eigenvalues are mixed in sign, the stationary point x; is a
saddle point. Eq. (22) represents a minimax surface where a de-
crease in yield is predicted when one moves away from the center
of the system in either the positive or negative directions of w; and
w», and correspondingly an increase in yield is predicted in either
the positive or negative directions of w; and w,. In Eq. (22) it can be
observed that all eigenvalues are not of the same order of magni-
tude. This means that the same displacement in each of the main
directions do not cause a comparable variation of the response.
Canonical analysis through eigenvalues of matrix B yields to the
main directions which tend to increase (or decrease) the response
faster, and to what extent. Response surfaces and the contour plots
can then be employed in order to find optimum conditions and to
determine more precisely how sensitive the estimated response is
for any displacement away from the stationary point.

5.5. Estimation of optimum configurations through response surfaces
and contour plots

It is often necessary for practical reason to use constrained opti-
mization to identify potential operating conditions. This is particu-
larly true when the stationary point is a saddle point. The response
surface and contour plots provide then one of the most revealing
ways of illustrating and interpreting the responses surfaces sys-
tem. Such graphical displays derived from the polynomial model
of process under study, after fixing some factors so as to estimate
the response while other factors are free to vary. For ease of graph-
ical representation, only two factors are free to vary while the two
other ones are held constant. The following sections illustrate

various configurations obtained from Eq. (21) in order to estimate
the levels of factors which yield an optimum.

5.5.1. Moving mass vs. enclosure volume

The response surfaces and contour plots in Figs. 9 and 10 show
the effect of the moving mass M and enclosure volume V on the
sound absorption coefficient under the condition that the filling
density of mineral fiber T and electrical load value R are held con-
stant. When the enclosure is partially filled with mineral fiber
materials (t=75%), and when an electrical load R=1Q is con-
nected to the electric terminals of the loudspeaker, two areas of
optimum conditions can be identified. Indeed, the figures show
that a full absorption may be expected for the natural levels
(M~13 x103kg and V~28 x103m?), as well as for (M>
25 x 103 kg and V=~ 20 x 10> m3). When the volume of the
enclosure is left empty (t =0%) and the electroacoustic absorber
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Fig. 9. Moving mass vs. volume, 7=75% and R=1 Q.
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Fig. 10. Moving mass vs. volume, 7 =0% and R= 100 Q.

is shunted with a high electrical load value (R = 100 Q), one can ob-
serve that the optimum conditions are drastically different. With
such adjustment, it is not expected to have good absorbent proper-
ties, anywhere in the design space (see Fig. 10).

5.5.2. Moving mass vs. electrical load

Figs. 11 and 12 illustrate the effect of M and R over the sound
absorption coefficient under the condition that 7 and V are held
constant. In the case of a volume of 12 x 10~ m? which is partially
filled with mineral fiber (7 = 25%), we can clearly identify the opti-
mum operating conditions around (M > 25 x 10 3kgand R~ 1 Q).
For other levels of V and 7, the expected response is slightly differ-
ent. For a larger volume of the enclosure and without any mineral
fiber, the expected optimum conditions depend mainly on R, and
on M to a worse extent (see Fig. 12).
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Fig. 11. Moving mass vs. electrical load, 7 =25% and V=12 x 107> m>,

5.5.3. Enclosure volume vs. electrical load

Figs. 13 and 14 illustrate the effect of V and R over the sound
absorption coefficient under the condition that T and M are held
constant. For a moving mass M =21 x 10~3 kg and without any
mineral fiber within the enclosure, we identify the optimum con-
ditions when V~24 x 10> m~> and R~ 1 Q. When no mass is
added to the loudspeaker’s moving mass (M =13 x 1073 kg), and
when the enclosure is partially filled with mineral fiber (t = 25%),
the trend is nearly the same (see Fig. 14).

5.5.4. Enclosure volume vs. filling density

Figs. 15 and 16 illustrate the effect of V and 7 on the sound
absorption coefficient under the condition that R and M are held
constant. For a moving mass M =21 x 10 3 kg and an electrical
load of 1Q, the volume of the enclosure needs to be close to
24 x 10> m3 so as to attain optimum conditions. However, the
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Fig. 12. Moving mass vs. electrical load, 7 = 0% and V=20 x 107> m>.

requirement for 7 is less drastic, as illustrated in the Fig. 16. When
the moving mass is smaller and the electrical load higher, the vol-
ume should be slightly larger (V~ 28 x 10> m?) and the filling
density upper than 50%. With such an adjustment however, the ex-
pected acoustic performance of the absorber should be worse.

5.6. Constraints imposed by the room modal control application

Since the electroacoustic absorber has been designed for a mod-
al control application in rooms, especially the first specific modes
around 50 Hz, the main design constraints are relative to the size
of the device, and hence the volume of the enclosure to be embed-
ded into walls. The results that follow include two configurations
with a fixed volume of 101 initially left empty and then partially
filled with mineral fiber. The objective is to find optimum operat-
ing conditions associated for both cases. For a volume left empty,
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Fig. 13. Volume vs. electrical load, T =0% and M =21 x 107> kg.

i.e. with 7 = 0%, the expected behavior of the electroacoustic absor-
ber is illustrated in Fig. 17.

For a volume partially filled with mineral fiber, i.e. with T = 80%,
the predicted absorption coefficient within the bounds of explana-
tory variables R and M is illustrated in Fig. 18.

These contour plots will help us identify the optimum operating
conditions within the imposed constraints. By tuning the electro-
acoustic absorber at the levels marked by a cross on the contour
plots, Eq. (21) estimates the two following absorption coefficients
for the 50 Hz one-third octave band:

(M =0.027,V =0.01,7=0,R=0.68) ~ 1 (23)
(M =0.029,V =0.01,7=0.8,R=10) ~ 0.97 (24)
In order to validate those computed responses, measurements

were performed at these levels after ISO-10534-2 standard using
the same setup as depicted in Fig. 2. The two measured curves
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Fig. 14. Volume vs. electrical load, 7 =25% and M =13 x 107> kg.

representing the one-third octave bands absorption coefficient for
the configurations given by Egs. (23) and (24) are presented in
Fig. 19.

Fig. 19 clearly shows that computed values which are obtained
from the fitted second-order response function match the mea-
sured absorption coefficient in both cases. Moreover, it can be
noted that the required value of electrical load to which the
loudspeaker is connected depends on the filling density of mineral
fiber. For an enclosure left empty, the optimum operating condi-
tions are expected for a value of electrical load lower than the
d.c. resistance of the moving-coil loudspeaker (see Table 2). Con-
versely, for an enclosure partially filled with mineral fiber, the va-
lue of electrical load needs to be upper the d.c. resistance.

In order to assess the capabilities of such devices to damp sev-
eral modes at a time, the electroacoustic absorber has been in-
stalled at one end of a 4 m length duct with the objective to
attenuate the first resonant mode around 49 Hz. A main sound
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Fig. 15. Filling density vs. volume, R=1Q and M=21 x 10> kg.

source delivering a swept sine excitation is placed at the opposite
end and the resulting sound pressure level is measured with a
microphone close to the electroacoustic absorber. Fig. 20 show
the measured sound pressure level in case of hard wall and with
the electroacoustic absorber in the configurations given by Egs.
(23) and (24).

Fig. 20 clearly shows that the electroacoustic absorber after
optimization for the 50 Hz one-third octave band yields a first-
mode attenuation of more than 12 dB. Compared to the hard wall
configuration, that is to say when the opposite end of the sound
source is rigid, it can be observed that the electroacoustic absorber
does not affect the response for higher frequencies but tends to
slightly attenuate the second resonant mode of more than 4 dB.
It is important to note that only a few modes close to the resonant
frequency of the loudspeaker can be controlled. Thus, depending
on the frequency range of interest, the selection of a suitable loud-
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Fig. 16. Filling density vs. volume, R=100 Q and M =13 x 107> kg.

speaker is critical in order to design an effective sound absorber.
Further development phases will now focus on the embodiment
of an absorbing panel made of electroacoustic absorbers so as to
obtain a large enough surface to significantly damp the first trou-
blesome modes in the control room of the recording studio.

6. Conclusion

In this paper a method for optimizing acoustic performances of
an electroacoustic absorber has been proposed. Assuming the
change of a factor (or parameter) at a time often leads to select a
wrong optimum, due to potential interactions between factors
which are not taken into account, the response surface methodol-
ogy has been applied to alleviate this situation. In this study four
influential constitutive parameters have been selected to reflect
some dissipative mechanisms of sound energy induced by an elec-
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Fig. 17. Expected behavior for V=10 x 10~ m* and 7 = 0%.
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Fig. 18. Expected behavior for V=10 x 10~ m® and 7 = 80%.

troacoustic absorber. Without much prohibitive computational ef-
forts to process designed experiments, these methods based on
approximation concepts show a real interest for optimizing a mul-
tivariate system such as an electroacoustic absorber, introducing
statistics from upstream of the experimental process which in-
creases the reliability of the results. From the series of tests carried
out, several conclusions can be drawn. First, the information pro-
vided by RSM is helpful to give the direction of the design modifi-
cations and the fitted surfaces can be used to identify an
appropriate direction of potential improvement for absorbing
sound energy. Moreover the use of RSM can give a reliable insight
into the estimation of the absorbtion coefficient anywhere within
the space of the process. Results relate only to the 50 Hz one-third
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Fig. 20. Measured magnitude of the sound pressure in a duct.

octave band, but by using the same approach it is still possible to
identify optimal operating conditions varying with frequency.
Moreover, some unexpected effects can be easily highlighted. For
instance, it has been shown that the optimal settings of the electro-
acoustic absorber drastically depends on the quantity of mineral fi-
ber which fill the enclosure. With an empty enclosure the electrical
load value needs to be lower than the d.c. resistance of the loud-
speaker but nonzero, while conversely it needs to be upper in case
of presence of mineral fiber inside the enclosure. Experiments per-
formed after optimization on a closed acoustic duct demonstrate
the effectiveness of electroacoustic absorber to attenuate the first

resonant modes without affecting the response elsewhere. At last,
it has been proven that, during the process of designing an electro-
acoustic absorber, the equivalent acoustic impedance of the back-
cavity should be taken into account in the models prior to compute
the optimal electrical load to connect to the loudspeaker’s electric
terminals. This experimental technique could be especially useful
for designing both electroacoustic transducer and its electrical
and acoustical conditioning (enclosure, electric load, etc.) in a sin-
gle process, without a priori selection of the loudspeaker. It can
also alleviate the modeling of the numerous non-linear compo-
nents of the transducer (suspension, driver) that could have poten-
tial prejudicial (or beneficial) effects on the performances on the
electroacoustic absorber.
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